

AQUACULTURE SUSTAINABILITY CERTIFICATION SYSTEM

Fernanda de Freitas Borges¹, Wagner Cotroni Valenti² ^{1,2}Aquaculture Center at Unesp

Introduction

The sustainability of aquaculture can be recognized by the market through certification, with credible systems with the potential to meet the demands of the trade and provide a tool to support the activity (FAO, 2011). Furthermore, product labeling can add value and open new markets, facilitating exports (Valenti et al., 2021). The portfolio of indicators developed covers the fundamental principles of sustainability and is well accepted by those interested in the area, serving as a tool for evaluating and monitoring the production of aquatic organisms (Valenti et al., 2018).

Objective

The aim of the study was to develop a sustainability certification tool for aquaculture farms.

Methods

We have selected a set of quantitative indicators suitable for evaluating all the major aquaculture systems globally used. These indicators were arranged to measure important aspects of the three sustainability dimensions: economic, social, and environmental, according to Agenda 2030. Economic indicators demonstrate whether capital is efficiently used and if the activity is profitable and can generate enough wealth or profit to keep the producer in the business. Social indicators assess whether the project generates benefits for local communities, such as jobs, food security, income equity, and social inclusion. Environmental sustainability measured the use of natural resources, the efficiency in using resources, and the release of pollutants into the environment. All selected indicators were previously tested in almost 50 aquafarms of fish, crustaceans, mollusks and algae.

Results

Farms can receive Bronze, Silver, or Gold seals according to the level of sustainability attained. For Bronze grade, the farm must reach levels considered sustainable in 60% of the indicators, being 13 environmental, 12 socials and 8 economic. For Silver grade, it must reach 75% of the indicators for each dimension, at least 16 environmental, 15 social, and 10 economic. To obtain a Gold grade, farms should reach a sustainable level in 90% of all indicators, including at least 20 environmental, 18 social and 12 economic indicators (Table 1).

Indicators			
Seals	Environmentals	Socials	Economics
Bronze	Use of Space	Development of Local Economy	Ratio between Net Income and Initial Investment
Bronze	Dependence on Water	Use of Local Workers	Payback Period
Bronze	Use of Energy	Remuneration of Work per Unit of Production	Benefit-Cost Ratio
Bronze	Use of Phosphorus	Investment to Create Direct Employment	Net Profit
Bronze	Use of Nitrogen	Permanence in the Activity	Diversity of Products
Bronze	Efficiency in the Use of Energy	L ocal Consumption of Production	Diversity of Markets
Bronze	Efficiency in the Use of Phosphorus	Pay Equality	Annual Incom e
Bronze	Efficiency in the Use of Nitrogen	Incom e Distribution	Permanence of the Farm er in the Activity
Bronze	Production Actually Used	Participation in Outside Community Activities	Internal Rate of Return
Bronze	Potencial of Eutrophication (P)	G ender Inclusion	Net Present V alue
Bronze	Potencial of Eutrophication (N)	Racial Inclusion	Risk Rate
Bronze	Potencial of Siltation	Age Inclusion	Invested Capital Generated in the Activity
Bronze	Accumulation of Particulate Material	Safety at Workplace	
Silver	General Chemical Pollution	Access to Health-Insurance Programs	
Silver	Accumulation of Phosphorus	Schooling	
Silver	Accumulation of Organic Matter	Proportional Cost of Work	
G old	Potencial of Acidification	Required Work per Unit of Occupied Area	
G old	Potencial of Global Warming	Required Work per Unity of Production	
G old	Pollution by Hormones		
G old	Risk of Farm ed Species		

Sustainability certification has been the subject of study in different areas of knowledge, given its contribution to improving the relationship between producing farms and society. Thus, the certification of an aquaculture enterprise may increase competitiveness and access to new markets, adding value to its products and positively affecting the production chain.

FAO. (2011). Technical Guidelines on Aquaculture Certification. Food and Agriculture Organization of the United Nations. Rome.

VALENTI, W.C.; KIMPARA, J.M.; PRETO, B.L.; MORAES-VALENTI, P. (2018). Indicators of sustainability to assess aquaculture systems. Ecological Indicators, v. 88, pp. 402–413.

VALENTI, W. C., BARROS, H. P., MORAES-VALENTI, P., BUENO, G. W., & CAVALLI, R. O. (2021). Aquaculture in Brazil: past, present and future. Aquaculture Reports, v. 19, pp. 100611.

Table 1. Bronze, Silver, or Gold seals according to quantify of indicators obtained in the farm.

Conclusion