The effect of different dosages of BL23 probiotics on off-flavour compounds in Nile tilapia culture ponds

Gilbert Owusu-Afriyie^{1,2}, Liu Liping^{1,2,3}, Li Kang^{1,2,3}, Abdoul Gadiri Sow^{1,2}, Yan Li^{1,2}, Godwin Abakari², Emmanuel O. Kombat^{4,5}, Elliot H. Alhassan⁶, Andrew Apraku⁷

¹Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China ²Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China ³National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China ⁴Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China ⁵Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, P.O.Box NV 24, Navrongo, UK-0215-5321, Ghana ⁶Department of Fisheries and Aquatic Resources Management, University of Development Studies, P.O.Box TL 1882, Tamale, Ghana ⁷Department of Fisheries and Water Resources, University of Energy and Natural Resources, P.O.Box 214, Sunyani, Bono Region, Ghana

Abstract

Off-flavour is a major problem that affects the quality of fish products from aquaculture. Though it does not pose a threat to fish health or human health, it upsets the suitability of fish for processing, which ultimately causes resources loss. Metabolites from Actinomycetes and cyanobacteria are two major sources that cause fish and fish products to be tainted with geosmin and 2-MIB. This research investigated the effect of different doses (100gtank-1, 200gtank-1, and 300gtank-1) of Bacillus licheniformis strain 23 (BL23) on off-flavour compounds on Nile tilapia cultured in ponds for 8 weeks. At the end of the experiment, the off-flavour concentrations from the treatment groups were significantly lower (p<0.05) compared to the control group. The results suggest the potential of BL23 probiotics to reduce off-flavour concentration in Nile tilapia culture ponds.

Methodology

0	Description of Experimental Treatments					
Geosmin and 2-MIB were		Treatment				
extracted from the fish fillet		Group A (CT)	Group B (BL100)	Group C (BL200)	Group D (BL300)	
alke the state is the alke the	Pond area (m ²)	15	15	15	15	
by Microwave Distillation-	Cage dimension (m ³)	1.5 x 1.5 x 1	1.5 x 1.5 x 1	1.5 x 1.5 x 1	1.5 x 1.5 x 1	
	Cage depth (m)	1	1	1	1	
Solid-Phase	Water depth (m)	0.6	0.6	0.6	0.6	
Microextraction and	No. of Nile tilapia stocked	75 ³	75 ³	75 ³	75 ³	
analyzed by Cas	Nile tilapia average weight (g)	71.05	71.05	71.05	71.05	
analyzed by Gas	Probiotics	N/A	4.5×10^{10}	4.5×10^{10}	4.5×10^{10}	
	concentration		CFU/g	CFU/g	CFU/g	
Chromatography-Mass	Probiotics dosage	N/A	100g	200g	300g	
Spectrometer.	Feeding rate	Full satiation				

Results & Discussion

Relatively higher levels of geosmin was observed in both water and fish fillet in all groups. BL23 dose of 300gtank⁻¹ produced the lowest level of off-flavour compounds in the water and fish fillets.

Relatively high survival rates and weight gain was observed in all groups. This study suspects that the microbial communities have mutually beneficial relationship with the Nile tilapia.

Conclusion

Off-flavour compounds and water quality as well fish growth parameters were significantly improved. BL23 probiotics at a dosage of 300g/m3 has proven to be able to reduce off-flavour compounds by inhibiting the microorganisms, Actinobacteria and Cyanobacteria at the concentrations with which this research was designed. Further research that will consider changing aspects of this study especially, different concentrations, frequency or doses is encouraged.

The Proteobacteria and Actinobacteria were the most dominant bacteria phyla observed. Members of these phyla are reportedly responsible for the high production off-flavour compounds.

Nile tilapia growth performance and utilisation of feed in the four (4) groups

	and the state of t				The state of the state of
2012	Parameter	СТ	BL100	BL200	BL300
	Initial mean weight (g fish ⁻¹)	141.15	141.15	141.15	141.15
	Initial number (fish tank ⁻¹)	75	75	75	75
	Survival rate (%)	91.46±3.06 ^a	93.04±4.95ª	95.76±3.06 ^a	$98.93{\pm}0.06^{a}$
and and	Specific growth rate (% day ⁻¹)	1.38±0.01ª	1.63±0.13ª	1.05±0.14 ^a	1.48±0.14ª
	Weight gain (%)	103.85±7.63ª	108.85.10±6.37 ^a	233.874±17.14ª	193.83±11.27ª
	Average daily weight gain (g day ⁻¹)	2.35±0.92ª	2.51±0.77ª	$3.54{\pm}2.07^{b}$	3.25 ± 2.07^{b}
	Food conversion rate (kg kg ⁻¹)	1.36±0.01ª	1.29±0.03ª	1.01 ± 0.13^{b}	$1.03{\pm}0.04^{b}$