Introduction

Ethiopia could be a water tower of northeastern Africa where most of its part is arid. The inlands water body of Ethiopia is estimated at 7400 km 2 of the lake's area and about 7000 km 2 a total length of rivers (Wood and Talling 1998).
Ethiopian freshwater systems are classifying into seven drainage basins. These are the Abay, Awash, BaroAkobo, Omo-Gibe, Rift Lakes, Tekeze and Wabishebele-Genale basins.
The Number of fish species record from the seven drainage basins of Ethiopian has; Baro (87), Abay (36), Rift Valley Lakes (32), Wabe-Shebla (26), Omo (26), Awash (15), and Tekeze (10) (Abebe, 2007).
The purpose of this study was to collect information about the fish's resource potential, species composition, abundance, many biological aspects of the fish species of the present, and the Physico-chemical characteristics of the surface water.

Methodology

In the study lake, three sampling sites have selected. Purposively:
Site one (S1), outlet, site two (S2); this site has high vegetation covers and site three (S3); open water
pH , conductivity and temperature were measure in-situ using a portable Wagtech meter;
Transparency has evaluated using a standard 20 cm diameter Secchi disc.
Fishing simultaneously with multifilament gillnets of $6,8,10,12 \mathrm{~cm}$ stretched mesh sizes
from stage IV females fish, the gonads were collected and preserved in Gilson's fluid to estimate fecundity
Morpho-edaphic index (MEI) has been applied to estimate annual fishes yield by dividing the mean conductivity by the mean depth (Ryder et al. 1974)

Table 1. Empirical models used to estimate potential yield

Authors	Equations	Yeied
Henderson and welcome 1974	$Y=\left.14.3136 \mathrm{ME\mid}\right\|^{(0.488)}$	Kg/ha/year
Ryderet al. 1974	$r=\left.23.281 \mathrm{ME}\right\|^{(0,44)}$	Kg/ha/year

The relationships between total length and the total weight fish species have calculated using; the power function (Bagenal and Tesch 1978) $T W=a X T L^{b}$
The Relative condition factor (Kn) has used to determined using; $K n=\frac{T W}{a T l^{b}}$ The sex ratio has determined by;
the total number of captured females divided by the total number of captured males. Size at first maturity (TL50) was described by the logistic regression equation, based on Gunderson et al. (1980). $\quad P_{X}=\frac{1}{(1+\exp (b x+a))}$
TL50\% was get derived from the relationship of "a" and "b" $T L=-\frac{a}{b}$ (Sparre and Venema 1998 The fecundity of each ripe fishes had determined by the gravimetric method. Samples of 3 g of eggs have taken from the ovary
The number of ripe eggs in the gonads from a single fish had determined
by using the following formula: $E=\frac{W g * n s}{W e}$

Results

Table2. The mean \pm SD Physico-chemical parameters at three sampling site of Lake Golbo

Parameters		Sampling Site of Lake Golbo		
		S1	S2	S3
pH	Mean 5 SD	8.24 ± 1.22	8.32 ± 1.33	7.79 ± 0.61
	Rang	9.96-7.1	9.78-7.06	8.6-7.29
Conductivity ((s/cm)	Mean 5 SD	396.1 ± 28.2	398.3 529.3	378.2+66.2
	Rang	436-351	433-347	456-281
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Mean 5 S	24.8 ± 1.82	24.53 ± 1.75	24.6 ± 1.3
	Rang	27.8-23	26.9-22.5	26.7-23.3
Secchi depth (m)	Mean 5 S	1.97 ± 0.31	2.5440 .87	2.63 0.4 .41
	Rang	2.33-1.75	3.54-1.98	3.1-2.3

Based on Morpho edaphic index, the average potential yield of fishes' community was $348.1 \mathrm{~kg} / \mathrm{y}$ yar.
The overall mean relative Fulton's condition factors (Kn) obtained for C. gariepinus and O. niloticus were 1.01 and 0.6 in order. Based on the number Clarias gariepinus (54.1%) was the most dominant fish species.

Figure1. The estimated length (TL)-total fresh weight (TW) relationships for O. niloticus(A) and for C. gariepinus (B
The overall mean relative Fulton's condition factors (K n) obtained for C . gariepinus and O . niloticus were 1.01 and 0.6 in order. Based on the number Clarias gariepinus (54.1%) was the most dominant fish species. The fecundity of C. garipenius in terms of numbers of eggs per female range from 1920 to 145118 with a mean of 25 890. EIAR

